

WHAT ARE THE DISTRIBUTIONAL EFFECTS OF ADAPTATION TO FUTURE "RECORD-SHATTERING" HEAT WAVES?

SEBASTIAN SIPPEL
CLIMATE MODELLING AND STATISTICS

THOMAS STEGER
ENVIRONMENTAL MACROECONOMICS

CLIMATE ATTRIBUTION

Sebastian Sippel, Thomas Steger

Understanding record-shattering heat waves

- Large ensemble model simulations and observations of daily temperatures
- Physical drivers of heat waves:
 Extreme circulation states, land-atmosphere feedbacks, climate change
- Attribution of events: Internal variability vs. forced response

Future heat waves and impacts

- How to estimate regional risk for record-shattering heat waves?
- What are the impacts of future heat waves in terms of mortality?
- How does private adaptation change impacts?

Second cohort: Attribute human mortality impacts of heat waves

ENVIRONMENTAL MACROECONOMICS

Thomas Steger, Sebastian Sippel

Climate-macroeconomic modelling

- Private adaptation decisions
- Simple climate-macro model under household heterogeneity
- Health damages (conditional on private adaptation)
- Regional heterogeneity

Regional and personal heterogeneity

- Employ regional temperature data
- Assume income distribution constant across regions
- Aggregate shocks → idiosyncratic consequences (Grossman et al., 2021, JET)

Second cohort: Study distributional effects with endogeneous health investments in an overlapping-generations model

SHARED METHODOLOGY:

ICP REGIONAL CLIMATE

SEBASTIAN SIPPEL, THOMAS STEGER

ATTRIBUTION OF REGIONAL HEAT WAVES

RESEARCH QUESTIONS

- How can we understand "record-shattering" heat waves? Which drivers lead to these events, and can we attribute them?
- Can we identify factors or regions that lead to a possibility to anticipate such events?
- What are the implications of the occurrence (or non-occurrence) of those events for mortality-related welfare costs and adaptation activity in an economic model? (link to PhD Project 2)

STATE-OF-THE-ART

- Some recent heat extremes have shattered previous records by very large margins, such as the Pacific Northwest heatwave 2021 (Bartusek et al., 2022; Nat. Climate Change)
- Such events are also simulated in physical climate models, and usually imply a rare combination of internal variability in the historical record, and an exceptional event, where multiple extreme drivers combine (Fischer et al., 2021; Nat. Climate Change)
- Yet it remains unclear whether analyses of the historical record, combined with attribution storylines, could anticipate such events.

METHOD

— A framework of Climate Attribution, consisting of combining large

- model ensembles with observations, will be used to study these events:
- We aim to identify forced and unforced components in regional heat wave trends
- This will be used to test whether historical attribution of forced and unforced components can help to constrain the occurrence probabilities of record-shattering heat waves

Figure Credit: E. Fischer, Pacific Northwest Heatwaye 2021

DISTRIBUTION OF HEAT-RELATED MORTALITY COST

RESEARCH QUESTION

— How is the heat-related mortality cost distributed across poor and rich households within countries?

METHOD

- Climate-macro model (Ramsey) under household heterogeneity capturing heat-related mortality costs
- Households can protect against rising temperature through adaptation, depending on private resources
- National data disciplines the model: Representative agent economy replicates aggregate data
- Grossman et al. (JET, 2021): Aggregate shocks have idiosyncratic consequences (partial and generel equilibrium)
- $\label{eq:continuous} \begin{tabular}{ll} \bf Employ\ regional\ temperature\ data; first\ step: Assume\ earning\ /\ wealth\ distribution \end{tabular}$

EXPECTED RESULTS

- Quantification of individual welfare losses caused by heat waves (anthropogenic component) conditional on income and wealth
- Historical periods: More granular data on distribution of heat-related mortality costs
- Future: Alternative climate change scenarios

FOLLOW UP

- OLG model under temperature volatility. Survival depends on heat waves, age, health, adaptation
- Steps: Average temperature → heat extremes → health damages conditional on health/adaptation

$$\max_{\{C_i^i,A_i^i\}} \sum_{t=0}^{\infty} \beta^t \left[u(C_i^i) - \underbrace{h(T_i,A_i^i)}_{\substack{\text{heat-related mortality costs} \\ \text{in terms of welfare}}} \right]$$

s.t. $C_t^i + A_t^i + W_{t+1}^i = (1 + r_t)W_t^i + w_t L_t^i$

Distribution of households over earnings deciles and wealth deciles, bata taken from the SCF+ in 2016, Source: Grossmann et al. (2021): Distributional Consequences of Surging Housing Rents, Journal of Economic Theory, 196.

